PHYSICAL REVIEW E, VOLUME 65, 041105

Coherence resonance versus synchronization in a periodically forced self-sustained system
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A fundamental relationship between coherence reson@iReand phase synchronization in a self-sustained
system in the presence of noise is addressed. A Van der Pol system synchronized by external forcing is taken
as an example. It is shown that, in breaking down synchronization, applied noise creates a new ordered motion
whose coherence depends resonantly on its intensity, i.e., CR occurs. The same is true for both types of
synchronization, via phase locking and via suppression: only the mechanisms of CR differ. The result is valid
for any ordem:m of synchronization.
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Synchronization is a fundamental nonlinear phenomenorthat maximizes the height of this peak, and thus the regular-
manifesting itself in phase-locking or frequency suppressiority of the corresponding motion. It is therefore a form of CR.
of oscillations in interacting or forced self-sustained systemdt arises for almost any point within the region of locking;
[1]. It arises in diverse areas of science, including, e.g.Wwhereas, in the region of suppression, it occurs only near the
Chemistry' astronomy, and physio|og&|_ The contemporary boundary. Due to the generality of the synchronization
perception of synchronization in the presence of noise is ifmechanisms our results are applicable to amy resonance.
many respects still based on the general theory developed by The harmonically forced Van der Pol oscillator has long
the late Stratonovicf8] for phase-locked periodic oscillators been used as a paradigm for the exploration of synchroniza-
influenced by noise. Although created for periodic oscilla-tion phenomena. In the presence of noise it can be described
tions, the methods of the theory have also been usefully ag?y
plied to studies of the synchronization of irregular motion

[4]. It is generally accepted that noise wrecks phase coher- X=Y,
ence in synchronized systems, and thisrupts synchroni- _
zation. However, it is now well known that in nonlinear sys- y=g(1—x?)y— wSer CsinQt+D¢(t). @

tems noise can often evoke a highly counterintuitive
response by playing a creative role. For example, in Fdf. Here e=0.2 is the nonlinearity parametany=1.0 andQ)

it was shown that external noise applied to a passive systemre, respectively, the frequencies of self-oscillation and of
can reduce the total noise at its output. A striking example igxternal forcing,C is the forcing strength, anéd represents
stochastic resonance, in which noise added to a nonlinegaussian white noise of zero mean and unity variance whose
system enhances its response to a useful sigged, e.g., intensity isD. In our study we used both numerical simula-
Ref. [6], and references therginAnother phenomenon is tions and analogue electronic modelling techniqii2g].
known as coherence resonanER), where noise induces Figure 1 shows schematically the analog circuit used for
oscillations whose coherence depends resonantly on thmodeling of Eq.(1) [13]. The voltages at pointd and B
noise intensity. It has been studied numericdlfi-9] and  correspond to the& andy coordinates of systertl), respec-
recently confirmed by analog electronic experim@]. In tively.

particular, CR was demonstrated for an equation of férm The noiseless cade=0 has been discussed, e.g., in Ref.
=a—cosx+t), e.g., in Ref.[11]. Such an equation was [1]. It was shown that, for a certain relationship between the
earlier showr 3] to describe the phase difference of a forcedamplitudeC and frequency) of the external forcing one can
periodic oscillator under the influence of noise for the sim-synchronize self-oscillations so that the frequencies of the
plest form of phase synchronization, namely, 1:1 phasesystem and of the external perturbation become related as
locking. Therefore, CR can be expected to manifest itself in

the power spectra of a 1:1 phase-locked system. But what i WW

AAAA— AAAA

the fundamental relationship between these two seemingly

very different phenomena, i.e., phase synchronization in it AR
most general form and CR? Is there any difference betweer ﬂ—WW
the mechanisms via which noise causes the breakdown @

synchronization for locking and suppression? How do the

Fourier spectra evolve with noise intensity? —i

. In the present paper we demongtrate th_at in the course 0 noise
disrupting either kind of synchronization, i.e., locking or < :E
suppression, noise induces a new coherent motion marked b A B Lw—— F sinQt
the appearance of aadditional peak in the spectral density
of oscillations. There is an optimal value of noise intensity FIG. 1. Circuit(schematif used for modeling1).
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FIG. 2. Part of the 1:1 synchronization regihaded for the B 20; oy 02 04 06
system(1). SN andT label the saddle-node and torus birth/death ok ; K i
bifurcation lines, respectively. In the area within the tongue below ey L aa J
curve B a resonant torus exists whose structure is shown in Fig. I T R S i Y - N
5(a). In the region above curvB only the stable cycle shown in 0 02 0.4 0.6
Fig. 5(b) exists. D

FIG. 4. RegularityB of the noise-induced spectral peak as a

: _function of noise intensityD for synchronization via frequency
occurs. In the €,0) parameter plane, the regions of syn locking for (@) n:m=1:1 and(b) n:m=1:3 from numerical simu-

O e Al 7L S0 taon (0)and g eparinen. et man s
- A - as a function of noise intensity.

2. There are two distinct synchronization mechanisms,

namely, via phase locking and via suppression of natural

oscillations, which are associated with two different bifurca-forcing, a new timescale is introduced by noise. It manifests

tions[1]. CurveB divides the Arnold tongue into two parts in itself through the appearance of a new spectral peak beside

which the structure of the phase space is qualitatively differ{here to the left of the main one corresponding to synchro-

ent. The system can therefore be expected to respond diffenized oscillations. The position of the latter is the same as in

ently to noise in different regions of the parameter plane. the absence of noise and the mean frequency is the integral
We now present the results of experimental and numericadverage of these two peaks.

investigations of noise-induced effects in an initially syn-  Note that, unlike the case of stochastic resonance, noise

chronized SyStem. FirSt, consider the lower part of the ArnOlwoeS not enhance the System’s response to the app“ed forc-

tongue of Eq(1) close to the synchronization bounddRig.  ing. Instead, it gives rise to a new motion whose frequency

2). We set the external forcing parameters@s 0.06, ) giffers from those of the already existing processes. The phe-

=1.0118 for 1:1 synchronization ar@=0.3, 2=0.33216  omenon is seen more clearly in FighBfor 1:3 synchro-

for 1:3 synchronization. Figure 3 shows how the oscillationy;ation, where the three spectral peaks are well distin-

spectra evolve as the noise Intensity |s.|ncreaBE53_, as uished; whereas for 1:1 synchronization we can see only

established by analogue electronic experiments. It is clearl o peaks, because the self-oscillation peak coincides with

evident that, in addition to periodic oscillations arising from that of forcing due to synchronization. Numerical simula-

resonant behavior between self-sustained oscillations arﬁjons have yielded very similar results. The heights and

widths of the noise-induced peaks change with variation of
the noise intensity; the coherence or regularity of the new
motion must presumably vary in a similar way.

To quantify the coherence or regularity of the oscillations
corresponding to the new spectral peak we use a quantity
that can be interpreted as a signal-to-noise rafo
=Hw,/Aw, whereH is the height of the peak at the fre-
quency w, and Aw is the peak width at the height/2.
Figure 4 displays the dependence of the new peak’s regular-
ity B on noise intensityD (a) for 1:1 and(b) for 1:3 fre-
quency locking as determined by numerical simulation and
analog experiment. In both graphs the coherence maxima are
well defined, constituting evidence for coherence resonance.
The numerical and analogue results are in satisfactory agree-
ment. We can conclude therefore that, as the noise intensity

FIG. 3. Spectral density of oscillations versus noise interity in the initially synchronized system increases, the transition
in the analogue experiment féa) 1:1 synchronization(b) 1:3 syn-  from the synchronous to the asynchronous regime involves
chronization. passage through another coherent motion with an additional

n:m, wheren andm are integers. Thugy:m synchronization
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FIG. 5. Poincaresections of the harmonically forced self-
sustained system for synchronization realized v& phase- B o4
frequency locking andb) suppressionC and SC denote the stable 0,2-
and saddle cycles, respectively.

timescale induced by the noise. The regulagtyf the main D

peak, correspond_ing to the init_ially_ synchroni;ed motiop de- FIG. 6. Results from the electronic experiment for the case of
creases monotonlcalllylwnh noise intensigee |r,lse1)s SO '.t synchronization via suppressiofa) Spectra of oscillations(b)
seems that the proximity of the whole system’s dynamics tqeqyarity 8 of the noise-induced motion as a function of noise
being quasiperiodic is maximal when the regularity of noise-ntensityD. The notation is as in Fig. 4.

induced motion is maximal, that is, for the optimal value of

D. For small noise intensity the contribution from the new “activation” and “excursion” times, respectively. Note that,
peak to the common motion is very small, and oscillations ofinside the region where the resonant torus exigslow

the system are close to the unperturbed periodic dynamicsurveB in Fig. 2), the noise is almost always able to induce
but for strong noise all coherence is destroyed. Similar specoherent motion. An exception is tlienprobable degener-

tral evolution was observed for other values of the paramate situation that arises where distances along the torus sur-
etersC andA within the synchronization tongue below liBe ~ face between the stable and unstable cycles are exactly the
in Fig. 2. same, whether moving clockwise or anticlockwise.

We now consider how noise can generate a new coherent Now, consider the upper part of the synchronization
motion on the way to destroying synchronization. Considettongue. Here, there is no torus in the phase space, and the
first the lower part of the Arnold tongue. Here, a resonanbne stable limit cycle that exis{f$-ig. 5(b)] attracts all tra-
torus exists in the phase space. Its structure can better lectories from a certain vicinity. The mechanism of noise-
visualized in Poincaresection[Fig. 5a)]. It is formed by induced coherent motion described above then becomes im-
unstable manifolds of the saddle cycle, which are closed opossible. The properties of the attracting cydle differ
the stable cycle. In the absence of noise the stable cycleetween different regions of the upper part of the tongue.
attracts all trajectories in the vicinity of the resonant torus.Namely, between curve§ and A the trajectories tend t€
As one leaves the tongue through the curve SN, the saddighile rotating along spirals, as shown in Figbb But in the
and stable cycles merge and disappear, representing the bbegion bounded by curve& and B this rotation is absent.
furcational manifestation gbhase locking breakdown Thus if noise perturbs the system in the former case, a com-

Let us assume that the minimal distance along the torupetition between two types of motion may be inferred, i.e.,
between the saddle and stable cycles is less than half of thietation along a spiral will interact with fluctuational motion.
torus circumference. When noise is applied, fluctuations caithis situation is related to that described in Ré&f,, where
throw the trajectory outside the region bounded by stablghe effect of noise on two coupled discrete maps was studied.
manifolds of the saddle cycléSC) [far right in Fig. Fa)], Noise will kick the trajectory from the stable cycle evoking
after which the trajectory returns rapidly to the stable cy&le rotations along spirals, that is, inducing coherent oscillations.
along the unstable manifold of SC. Thus an additional rotaHowever, it is clear that the rotations themselves are also
tion around the torus appears, corresponding to phase slipaffected by fluctuations and that strong noise will just smear
If the noise is very small, the slips occur rarely; and as thehem. Thus, for a certain moderate noise we can expect
noise intensity grows, the slips appear more frequently. But imaximally coherent motion around the stable cycle, i.e., the
is clear that very strong noise will simply smear the wholeoccurrence of CR.
dynamics. Therefore, the regularity of the new motion will To test this inference, we s&=0.48 and(1=1.129,
depend nonmonotonically on the noise intensity. This situaelose to the Neimark-Sacker bifurcation liffeinside the
tion is very similar to that described in R¢T]. An important  synchronization regiofFig. 2) and followed the evolution of
difference in the present case, however, is that events takbe spectrum of oscillations with increasing noise intensity
place on the resonant torus surface. This means that the frEFig. 6(a)]. As before, noise gives rise to a new spectral peak
guency of the noise-induced oscillatory component at birthvhose width and height are controlled by noise intensity. The
will be close to that of the synchronized oscillatidsse Fig. measured regularity of the new motion is plotted in Fig.

3), rather than close to zero as in REf]. Strictly speaking, 6(b). It is interesting that for synchronization via suppres-
the new timescale will be defined by the times needed taion, 8 also exhibits a nonmonotonic variation witD.
throw the trajectory from vicinity of stable cycle, and of Again, the analog and numerical results are in satisfactory
rotation around the torus which, in terms of Ref], are the  agreement.

041105-3



BALANOV, JANSON, POSTNOV, AND McCLINTOCK PHYSICAL REVIEW B55 041105

In marked contrast, inside the region bounded by cuAves For suppression, noise induces rotations around what is the
andB in Fig. 2, increasing noise intensity leads only to theonly stable cycle in the system. The present results are inter-
growth of a noisy background in the spectra, and thus n@sting, not only in terms of fundamental physics, but also
coherent motion is generated. To summarize, we have denbecause they may also be relevant to a range of interdiscipli-
onstrated that noise applied to a synchronized system playsrary problems, e.g., in neuroscience and biology, where syn-
dual role. On the one hand, it disrupts synchronization. Buthronization phenomena occur in the presence of fluctua-
at the same time it produces a new ordered motion whosgons.
coherence depends resonantly on the noise intensity. There is
an optimal value of noise intensity which produces maxi-
mally regular biperiodic oscillations, and thus CR. The un- We are grateful to D. G. Luchinsky and I. Kh. Kaufman
derlying CR mechanisms differ for synchronization via fre-for help with analog experiments and to the Leverhulme
guency and phase locking and via suppression of the naturdrust, the Medical and the Engineering and Physical Sci-
dynamics. For locking, the noise induces rotations along thences Research Councild.K.), the U.S. Civilian Research
torus, transverse to the stable cycle lying on it. It looks likeDevelopment FoundatioiGrant No. REC 006 and the
phase slips, whose frequency depends on the noise intensiffFBR (Grant No. 01-02-1670%or financial support.
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