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Coherence resonance versus synchronization in a periodically forced self-sustained system
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A fundamental relationship between coherence resonance~CR! and phase synchronization in a self-sustained
system in the presence of noise is addressed. A Van der Pol system synchronized by external forcing is taken
as an example. It is shown that, in breaking down synchronization, applied noise creates a new ordered motion
whose coherence depends resonantly on its intensity, i.e., CR occurs. The same is true for both types of
synchronization, via phase locking and via suppression: only the mechanisms of CR differ. The result is valid
for any ordern:m of synchronization.
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Synchronization is a fundamental nonlinear phenomen
manifesting itself in phase-locking or frequency suppress
of oscillations in interacting or forced self-sustained syste
@1#. It arises in diverse areas of science, including, e
chemistry, astronomy, and physiology@2#. The contemporary
perception of synchronization in the presence of noise is
many respects still based on the general theory develope
the late Stratonovich@3# for phase-locked periodic oscillator
influenced by noise. Although created for periodic oscil
tions, the methods of the theory have also been usefully
plied to studies of the synchronization of irregular moti
@4#. It is generally accepted that noise wrecks phase co
ence in synchronized systems, and thusdisruptssynchroni-
zation. However, it is now well known that in nonlinear sy
tems noise can often evoke a highly counterintuit
response by playing a creative role. For example, in Ref.@5#
it was shown that external noise applied to a passive sys
can reduce the total noise at its output. A striking exampl
stochastic resonance, in which noise added to a nonlin
system enhances its response to a useful signal~see, e.g.,
Ref. @6#, and references therein!. Another phenomenon is
known as coherence resonance~CR!, where noise induces
oscillations whose coherence depends resonantly on
noise intensity. It has been studied numerically@7–9# and
recently confirmed by analog electronic experiment@10#. In
particular, CR was demonstrated for an equation of formẋ
5a2cosx1j(t), e.g., in Ref.@11#. Such an equation wa
earlier shown@3# to describe the phase difference of a forc
periodic oscillator under the influence of noise for the si
plest form of phase synchronization, namely, 1:1 pha
locking. Therefore, CR can be expected to manifest itsel
the power spectra of a 1:1 phase-locked system. But wh
the fundamental relationship between these two seemi
very different phenomena, i.e., phase synchronization in
most general form and CR? Is there any difference betw
the mechanisms via which noise causes the breakdow
synchronization for locking and suppression? How do
Fourier spectra evolve with noise intensity?

In the present paper we demonstrate that in the cours
disrupting either kind of synchronization, i.e., locking o
suppression, noise induces a new coherent motion marke
the appearance of anadditional peak in the spectral densit
of oscillations. There is an optimal value of noise intens
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that maximizes the height of this peak, and thus the regu
ity of the corresponding motion. It is therefore a form of C
It arises for almost any point within the region of lockin
whereas, in the region of suppression, it occurs only near
boundary. Due to the generality of the synchronizati
mechanisms our results are applicable to anyn:m resonance.

The harmonically forced Van der Pol oscillator has lo
been used as a paradigm for the exploration of synchron
tion phenomena. In the presence of noise it can be descr
by

ẋ5y,

ẏ5«~12x2!y2v0
2x1C sinVt1Dj~ t !. ~1!

Here «50.2 is the nonlinearity parameter,v051.0 andV
are, respectively, the frequencies of self-oscillation and
external forcing,C is the forcing strength, andj represents
Gaussian white noise of zero mean and unity variance wh
intensity isD. In our study we used both numerical simul
tions and analogue electronic modelling techniques@12#.
Figure 1 shows schematically the analog circuit used
modeling of Eq.~1! @13#. The voltages at pointsA and B
correspond to thex andy coordinates of system~1!, respec-
tively.

The noiseless caseD50 has been discussed, e.g., in R
@1#. It was shown that, for a certain relationship between
amplitudeC and frequencyV of the external forcing one can
synchronize self-oscillations so that the frequencies of
system and of the external perturbation become related

FIG. 1. Circuit ~schematic! used for modeling~1!.
©2002 The American Physical Society05-1
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n:m, wheren andm are integers. Thus,n:m synchronization
occurs. In the (C,V) parameter plane, the regions of sy
chronization form so-called Arnold tongues@14#. A portion
of the 1:1 synchronization region for Eq.~1! is plotted in Fig.
2. There are two distinct synchronization mechanism
namely, via phase locking and via suppression of natu
oscillations, which are associated with two different bifurc
tions@1#. CurveB divides the Arnold tongue into two parts i
which the structure of the phase space is qualitatively dif
ent. The system can therefore be expected to respond d
ently to noise in different regions of the parameter plane

We now present the results of experimental and numer
investigations of noise-induced effects in an initially sy
chronized system. First, consider the lower part of the Arn
tongue of Eq.~1! close to the synchronization boundary~Fig.
2!. We set the external forcing parameters asC50.06, V
51.0118 for 1:1 synchronization andC50.3, V50.33216
for 1:3 synchronization. Figure 3 shows how the oscillati
spectra evolve as the noise intensity is increased@15#, as
established by analogue electronic experiments. It is cle
evident that, in addition to periodic oscillations arising fro
resonant behavior between self-sustained oscillations

FIG. 2. Part of the 1:1 synchronization region~shaded! for the
system~1!. SN andT label the saddle-node and torus birth/dea
bifurcation lines, respectively. In the area within the tongue be
curve B a resonant torus exists whose structure is shown in
5~a!. In the region above curveB only the stable cycle shown in
Fig. 5~b! exists.

FIG. 3. Spectral density of oscillations versus noise intensityD
in the analogue experiment for~a! 1:1 synchronization,~b! 1:3 syn-
chronization.
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forcing, a new timescale is introduced by noise. It manife
itself through the appearance of a new spectral peak be
~here to the left of! the main one corresponding to synchr
nized oscillations. The position of the latter is the same a
the absence of noise and the mean frequency is the inte
average of these two peaks.

Note that, unlike the case of stochastic resonance, n
does not enhance the system’s response to the applied
ing. Instead, it gives rise to a new motion whose frequen
differs from those of the already existing processes. The p
nomenon is seen more clearly in Fig. 3~b! for 1:3 synchro-
nization, where the three spectral peaks are well dis
guished; whereas for 1:1 synchronization we can see o
two peaks, because the self-oscillation peak coincides w
that of forcing due to synchronization. Numerical simul
tions have yielded very similar results. The heights a
widths of the noise-induced peaks change with variation
the noise intensity; the coherence or regularity of the n
motion must presumably vary in a similar way.

To quantify the coherence or regularity of the oscillatio
corresponding to the new spectral peak we use a qua
that can be interpreted as a signal-to-noise ratiob
5Hvp /Dv, whereH is the height of the peak at the fre
quency vp and Dv is the peak width at the heightH/2.
Figure 4 displays the dependence of the new peak’s regu
ity b on noise intensityD ~a! for 1:1 and~b! for 1:3 fre-
quency locking as determined by numerical simulation a
analog experiment. In both graphs the coherence maxima
well defined, constituting evidence for coherence resona
The numerical and analogue results are in satisfactory ag
ment. We can conclude therefore that, as the noise inten
in the initially synchronized system increases, the transit
from the synchronous to the asynchronous regime invol
passage through another coherent motion with an additio

.

FIG. 4. Regularityb of the noise-induced spectral peak as
function of noise intensityD for synchronization via frequency
locking for ~a! n:m51:1 and~b! n:m51:3 from numerical simu-
lation (s) and analog experiment (m). Inset:b for the main peak
as a function of noise intensity.
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timescale induced by the noise. The regularityb of the main
peak, corresponding to the initially synchronized motion d
creases monotonically with noise intensity~see insets!: so it
seems that the proximity of the whole system’s dynamics
being quasiperiodic is maximal when the regularity of noi
induced motion is maximal, that is, for the optimal value
D. For small noise intensity the contribution from the ne
peak to the common motion is very small, and oscillations
the system are close to the unperturbed periodic dynam
but for strong noise all coherence is destroyed. Similar sp
tral evolution was observed for other values of the para
etersC andA within the synchronization tongue below lineB
in Fig. 2.

We now consider how noise can generate a new cohe
motion on the way to destroying synchronization. Consi
first the lower part of the Arnold tongue. Here, a reson
torus exists in the phase space. Its structure can bette
visualized in Poincare´ section @Fig. 5~a!#. It is formed by
unstable manifolds of the saddle cycle, which are closed
the stable cycle. In the absence of noise the stable c
attracts all trajectories in the vicinity of the resonant tor
As one leaves the tongue through the curve SN, the sa
and stable cycles merge and disappear, representing th
furcational manifestation ofphase locking breakdown.

Let us assume that the minimal distance along the to
between the saddle and stable cycles is less than half o
torus circumference. When noise is applied, fluctuations
throw the trajectory outside the region bounded by sta
manifolds of the saddle cycle~SC! @far right in Fig. 5~a!#,
after which the trajectory returns rapidly to the stable cycleC
along the unstable manifold of SC. Thus an additional ro
tion around the torus appears, corresponding to phase s
If the noise is very small, the slips occur rarely; and as
noise intensity grows, the slips appear more frequently. Bu
is clear that very strong noise will simply smear the who
dynamics. Therefore, the regularity of the new motion w
depend nonmonotonically on the noise intensity. This sit
tion is very similar to that described in Ref.@7#. An important
difference in the present case, however, is that events
place on the resonant torus surface. This means that the
quency of the noise-induced oscillatory component at b
will be close to that of the synchronized oscillations~see Fig.
3!, rather than close to zero as in Ref.@7#. Strictly speaking,
the new timescale will be defined by the times needed
throw the trajectory from vicinity of stable cycle, and o
rotation around the torus which, in terms of Ref.@8#, are the

FIG. 5. Poincare´ sections of the harmonically forced sel
sustained system for synchronization realized via~a! phase-
frequency locking and~b! suppression.C and SC denote the stabl
and saddle cycles, respectively.
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‘‘activation’’ and ‘‘excursion’’ times, respectively. Note that
inside the region where the resonant torus exists~below
curveB in Fig. 2!, the noise is almost always able to indu
coherent motion. An exception is the~improbable! degener-
ate situation that arises where distances along the torus
face between the stable and unstable cycles are exactly
same, whether moving clockwise or anticlockwise.

Now, consider the upper part of the synchronizati
tongue. Here, there is no torus in the phase space, and
one stable limit cycle that exists@Fig. 5~b!# attracts all tra-
jectories from a certain vicinity. The mechanism of nois
induced coherent motion described above then becomes
possible. The properties of the attracting cycleC differ
between different regions of the upper part of the tong
Namely, between curvesT and A the trajectories tend toC
while rotating along spirals, as shown in Fig. 5~b!. But in the
region bounded by curvesA and B this rotation is absent
Thus if noise perturbs the system in the former case, a c
petition between two types of motion may be inferred, i.
rotation along a spiral will interact with fluctuational motion
This situation is related to that described in Ref.@9#, where
the effect of noise on two coupled discrete maps was stud
Noise will kick the trajectory from the stable cycle evokin
rotations along spirals, that is, inducing coherent oscillatio
However, it is clear that the rotations themselves are a
affected by fluctuations and that strong noise will just sm
them. Thus, for a certain moderate noise we can exp
maximally coherent motion around the stable cycle, i.e.,
occurrence of CR.

To test this inference, we setC50.48 andV51.129,
close to the Neimark-Sacker bifurcation lineT inside the
synchronization region~Fig. 2! and followed the evolution of
the spectrum of oscillations with increasing noise intens
@Fig. 6~a!#. As before, noise gives rise to a new spectral pe
whose width and height are controlled by noise intensity. T
measured regularityb of the new motion is plotted in Fig
6~b!. It is interesting that for synchronization via suppre
sion, b also exhibits a nonmonotonic variation withD.
Again, the analog and numerical results are in satisfact
agreement.

FIG. 6. Results from the electronic experiment for the case
synchronization via suppression.~a! Spectra of oscillations.~b!
Regularity b of the noise-induced motion as a function of noi
intensityD. The notation is as in Fig. 4.
5-3
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In marked contrast, inside the region bounded by curveA
andB in Fig. 2, increasing noise intensity leads only to t
growth of a noisy background in the spectra, and thus
coherent motion is generated. To summarize, we have d
onstrated that noise applied to a synchronized system pla
dual role. On the one hand, it disrupts synchronization.
at the same time it produces a new ordered motion wh
coherence depends resonantly on the noise intensity. The
an optimal value of noise intensity which produces ma
mally regular biperiodic oscillations, and thus CR. The u
derlying CR mechanisms differ for synchronization via fr
quency and phase locking and via suppression of the na
dynamics. For locking, the noise induces rotations along
torus, transverse to the stable cycle lying on it. It looks l
phase slips, whose frequency depends on the noise inten
gy
.
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For suppression, noise induces rotations around what is
only stable cycle in the system. The present results are in
esting, not only in terms of fundamental physics, but a
because they may also be relevant to a range of interdisc
nary problems, e.g., in neuroscience and biology, where s
chronization phenomena occur in the presence of fluc
tions.
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